skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Parfenova, Elena I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background. Since the mid-20th century, massive dieback of coniferous forests has been observed in the temperate and boreal zones across North America and Northern Eurasia. The first hypotheses explaining forest dieback were associated with industrial air pollution (acid rain). At the end of the century, new hypotheses emerged that supported critical climate-induced aridization to explain forest dieback. Many studies were based on the SPEI (Standardized Precipitation Evapotranspiration Index) drought index. Our goals were to investigate if the SPEI drought index was a suitable metric to reflect drought conditions in wet and moist dark-needled forests in the South Siberian Mountains (Mts) and if droughts trigger the dieback of those forests. Methods. We calculated the SPEI drought index, the annual moisture index AMI, potential evapotranspiration PET, and water balance dynamics for the period 1961–2019 for four transects in the South Siberian Mts. where decline/dieback of dark-needled Siberian pine and fir forests were identified in situ. Climate data from nine weather stations located at lower and upper elevations of each transect were used to calculate climatic index dynamics for the 1961–2019 period to identify dry and wet phases of the period. Results. Our findings showed that climatic moisture/dryness indices have rarely gone down to high risk levels during the last 60 years (1961–2019). AMI did not reach the critical limit, 2.25, characteristic of the lower border for the dark-needled taiga. SPEI values < −1.5 represent drought stress conditions for dark-needled conifers at the lower border, and these conditions occurred 3–4 times during the 60-year period. However, the annual water balance stayed positive in those years in wet and moist forests at mid-to-high elevations. Trees are known to survive occasional (1–2) dry years. We found that dark-needled conifer dieback often occurs in wet years with plentiful rain rather than in drought years. We found forest dieback was associated with the westerlies that bring atmospheric pollution from the west at 50–56 N latitudes, where the air masses cross populated regions that have widespread industrial complexes. Conclusions. We concluded that the observed decline of dark-needled conifers at middle-to-high elevations across South Siberia’s Mts was conditioned by several plausible causes, among which air pollution seems to be more credible than dry climatic conditions, as cited in the literature. Results are essential for understanding these ecosystems and others as our planet changes. Other causes and mechanisms should be further investigated, which would necessitate creating infrastructure that supports the teamwork of plant physiologists, foresters, chemists, etc. 
    more » « less
  2. Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tree species diversity in local communities, which remains to be tested at the global scale. To address this gap, we analyzed global forest inventory data and revealed that the relationship between tree species richness and EcM tree proportion varied along environmental gradients. Specifically, the relationship is more negative at low latitudes and in moist conditions but is unimodal at high latitudes and in arid conditions. The negative association of EcM tree proportion on species diversity at low latitudes and in humid conditions is likely due to more negative plant-soil microbial interactions in these regions. These findings extend our knowledge on the mechanisms shaping global patterns in plant species diversity from a belowground view. 
    more » « less
    Free, publicly-accessible full text available June 13, 2026
  3. Abstract The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5–7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions. 
    more » « less